RoboSoft CA "A Coordination Action for Soft Robotics"

First Community Plenary Meeting March 31 – April 1, 2014 Scuola Superiore Sant'Anna, Pisa, Italy

Welcome!

A Coordination Action for Soft Robotics FP7, THEME ICT-2013.9.1 "Challenging current Thinking", **FET-Open**

Tuscany, Italy

A Country and a region with an **extraordinary wealth** of artistic and cultural heritage, deep attention to preserving the **environment** and **social relations**, excellent climate, **good food** and a relaxed, friendly atmosphere favoring long and active life (highest life **expectancy in the world for males: 80.4 years**; **second highest for women: 84.9 years**)

Tuscany: the Land of Robot(ic)s

The University and Research System in Pisa

SCUOLA

Scuola Normale Superiore Established 1810 150 professors 283 students

CNR National Research Council 15 Research Institutes About 1.500 researchers Sistema Universitario Pisano

University of Pisa Established in 1343 2.100 professors 50.000+ students

Scuola Superiore Sant'Anna Established in 1987 100 professors 220 students

National Enterprise for nanoScience and nanoTechnology

National Institute of Nuclear Physics About 300 researchers

Eminent scientists and statesmen who studied and worked in Pisa

LEONARDO FIBONACCI (1170 - 1250) Mathematician

GALILEO GALILEI (1564 - 1642) Scientist, mathematician and philosopher

Giosuè Carducci (1835 - 1907) Nobel Prize in Literature 1906

CARLO RUBBIA (1934) Physicist Nobel Prize in Physics 1984

CARLO AZEGLIO CIAMPI (1920) President of the Italian Republic

ENRICO LETTA (1966) Former Prime Minister of Italy

Introduction to Soft Robotics and RoboSoft CA

Cecilia Laschi RoboSoft CA Coordinator

The BioRobotics Institute Scuola Superiore Sant'Anna

First Community Plenary Meeting March 31 – April 1, 2014

Scuola Superiore Sant'Anna, Pisa, Italy

Why RoboSoft?

- Soft Robotics is a young emerging area of research and technological development
- * Soft Robotics stems from robotics, from one side, and AI, from another side
- Soft Robotics is at the merge of many disciplines and technologies
- * Soft Robotics state of the art is increasingly rich, not only with bioinspired solutions, and applications are coming in many fields
- * The Soft Robotics community is growing and active, and needs coordination to synergise and consolidate

Soft Robotics: a working definition

Variable impedance actuators and stiffness control

- Highly flexible (hyper-redundant or continuum) robots
- * High number of tigid links, multi-axis joints

THE BIOROBOTICS INSTITUTE

IEEE Robotics and Automation Magazine, ^{Infanse} Special Issue on Soft Robotics, 2008

Use of soft materials in robotics

- Robots made of soft materials that undergo high deformations in interaction
- * Soft actuators and soft components
- * Control partially embedded in the robot morphology and mechanical properties

Soft Robotics stems from robotics, from one side...

Robotics

From industrial to service robotics

Robots outside factories... ... having to operate in the real world, they need to manage uncertainties and to react to changes in the environment

Rescue

Underwater

- Unstructured environment
- Perception
- Reactive behaviour
- Shared workspace with human beings

cuola Superiore

THE BIOROBOTICS

Space

Soft Robotics stems from robotics, from one side...

Robotics

From industrial to service robotics

Soft robotics

Bioinspired soft robots

Soft robot inspired to the biomechanics of Manduca sexta

Saunders, F., Trimmer, B.A. and Rife, R. (2011) Modeling Locomotion of a Soft Bodied Arthropod Using Inverse-Dynamics. Bioinspiration & Biomimetics 6 (1)

INSTITUTE

Secola SuperM.C. Carrozza; A. Arena; D. Accoto; A. Menciassi; P. Dario, (2003) A SMA-Actuated Miniature Pressure Regulator for a Miniature Robot for Colonoscopy, Sensors and Actuators. A, Physical - 105 : 119:131

Examples of state-of-the-art soft robots

Non-biomimetic approaches

Universal robotic gripper based on the jamming of granular material (Corneill University)

Brown, E., Rodenberg, N., Amend, J., Mozeika, A., Steltz, E., Zakin, M., Lipson, H., Jaeger, H. (2010) "Universal robotic gripper based on the jamming of granular material," *Proceedings of the National Academy of Sciences (PNAS)*, Vol. 107, no. 44, pp.18809-18814.

Jamming robot (iRobot)

Steltz, E.; Mozeika, A.; Rodenberg, N.; Brown, E.; Jaeger, H.M.; "JSEL: Jamming Skin Enabled Locomotion", *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009)*, St. Louis, MO, USA, October 11-15, 2009

Fig. 2. Side view of proposed jamming based soft robot, 3 cells unjammed, internal actuator inflated partially.

Soft Robotics stems from robotics, from one side, and AI, from another side

Robotics

From industrial to service robotics

Soft robotics

Embodied Intelligence or Morphological Computation: the modern view of Artificial Intelligence

Any cognitive activity arises from the *interaction* between the body, the brain and the environment (embodiment).

Adaptive behaviour is not just control and computation, but it emerges from the complex and dynamic interaction between the morphology of the body, sensory-motor control, and environment (Embodied Intelligence).

=> A new, soft, bodyware is needed

Modern approach

The focus is on interaction with the environment. Cognition is emergent from system-environment interaction

THE BIOROBOTIC

Rolf Pfeifer and Josh C. Bongard, *How the body shapes the way we think: a new view of intelligence*, The MIT Press, Cambridge, MA, 2007

A biomimetic soft robot with embodied intelligence

Actuators and wiring embedded inside structure Legs with Compliant Flexures

Shape (Deposit Deposit Shape Depofanufacturing usists of altercles of mateosition and The hexapod's I wiring were inside the of the body: As the figure, first placed in I geometry of us step, and ied by deposorial in the

Figure 1. "Sprawlita", a dynamically-stable running hexapod based on functional principles from biomechanical studies of the cockroach. The prototype was fabricated using Shape Deposition Manufacturing and is capable of speeds of approximately 3 body-lengths per second.

J.G. Cham, S.A. Bailey, J.E. Clark, R.J. Full, M.R. Cutkosky, "Fast and Robust: Hexapedal Robots via Shape Deposition Manufacturing", *The International Journal of Robotics Research*, Vol. 21, No. 10–11, 2002, pp. 869-882.

Fig. 7. Process plan for the robot legs. The figure shows the alternating layers of hard and soft material and embedded components used to make the compliant legs.

Soft Robotics stems from robotics, from one side and AI, from another side

Soft Robotics at the convergence of Robotics and AI

Robotics

From industrial to service robotics

Soft robotics is not just a new direction of technological development. The use of soft materials in robotics is going to unhinge its fundamentals.

Soft robotics

Soft robotics is going to stand as a novel approach to robotics and artificial intelligence, and it has the potential to produce a new generation of robots, in the support of humans in our natural environments.

Artificial Intelligence

From central processing to Morphological Computation

THE BIOROBOTICS

Soft Robotics is at the merge of many disciplines and technologies

From biology to robotics

L. Margheri, C. Laschi, B. Mazzolai, "Soft robotic arm inspired by the octopus. I. From biological functions to artificial requirements", *Bioinspiration & Biomimetics*, Vol.7, No.2, June 2012. B. Mazzolai, L. Margheri, M. Cianchetti, P. Dario, C. Laschi, "Soft robotic arm inspired by the octopus. II. From artificial requirements to innovative technological solutions", *Bioinspiration & Biomimetics*, Vol.7, No.2, June 2012. No.2, June 2012.

From biology to robotics

		Biological Specification (Octopus vulgaris)			Robotic Solution and Performance	7
Transverse Muscles	Design Arrangement				Patent pending	
	Mechanical performance	70% of arms mean elongation corresponding to 23% of diameter reduction			 Input to model for the design of the SMA: NiTi Alloy mechanical properties Wire diameter Average spring diameter Number of coils Heat treatments 	
Longitudinal Muscles	Design Arrangement					
	Mechanical performance	Max Pulling Force	Mean Pulling Force	Time	Longitudinal cables	
		49.8N @ 400mm (m=1600g) 26.8 @ 200mm (m=476g)	40 N with arm length 400mm (~100g)	1-2 sec.	 sheaths to reduce friction and avoid silicon damages Calibration parameters (<i>t</i>, <i>F</i>) 	
Grasp Point Position		0.75 of total arm length			End effector position and active arm length	
Nerve Cord Arrangement Arrangement		Sinusoidal arrangement at the arm rest length while has a distension during the elongation			Wire sinusoidal arrangement	

OCTOPUS

Soft Robotics is at the merge of many disciplines and technologies: **soft actuators**

Development of the soft actuator for transverse contraction

1 second of 600 mA direct current and then 50% duty cycle pulse current

6 SMA springs:

- 0.2 mm Flexinol[®] wire diameter
- <D>/d = 6 (cycle life parameter)
- Spring internal diameter = 1 mm

Silicone / braided sleeve:

- External diameter = 28mm
- Internal diameter = 20mm

Soft Robotics is at the merge of many disciplines and technologies: **fluido-dynamics**

Pulsed-jet propulsion in cephalopods

Giorgio Serchi F., Arienti A. and Laschi C. (2013) "Biomimetic Vortex Propulsion: Toward the New Paradigm of Soft Unmanned Underwater Vehicles", *IEEE/ASME Transactions on Mechatronics*, 18(**2**), pp. 484-493

Soft Robotics is at the merge of many disciplines and technologies

Modelling and control

CABLES TENSION function of time

FORWARD DYNAMICS with a:

ROBOT CONFIGURATION parameterized by the curvilinear abscissa X and time t

COSSERAT GEOMETRICALLY EXACT MODEL

- The cables are embedded inside the body of the soft robot
- They exert a load proportional to the cable tension and to the curvature and it is directed toward the centre of the curvature

Scuola Superiore

F. Renda, M. Cianchetti, M. Giorelli, A. Arienti, C. Laschi, "A 3D Steady State Model of a Tendon-Driven Continuum Soft Manipulator Inspired by Octopus Arm", *Bioinspiration & Biomimetics*, Vol.7, No.2, June 2012.

Inverse Kinetics: Neural Networks (NN) or Jacobian Method (JM)?

M Giorelli, F Renda, G Ferri, C Laschi, "A Feed-Forward Neural Network for Solving the Inverse Kinetics of Non-Constant Curvature Soft Manipulators Driven by Cables", *ASME Dynamical Systems* and Control Conference, October 21-23, Stanford University, Palo Alto, CA, USA, 2013

Soft Robotics is at the merge of many disciplines and technologies

C. Laschi, M. Cianchetti, "Soft Robotics: New Perspectives for Robot Bodyware and Control", Frontiers in Bioengineering and Biotechnology, N.2 (2014)

Soft Robotics applications

Biomedical applications: endoscopy, assistance to elderly and disabled people

The initial challenge: can we build robots with soft materials?

Application of OCTOPUS technologies in surgery

EUROPEAN COMMISSION European Research Area

SEVENTH FRAMEWORK

PROGRAMME

STIFF-FLOP

STIFFness controllable Flexible and Learn-able Manipulator for surgical OPerations

University of London

The STIFF-FLOP robotic manipulator

nt'Anns

Cianchetti M, Ranzani T, Gerboni G, De Falco I, Laschi C, Menciassi A (2013) "STIFF-FLOP Surgical Manipulator: mechanical design and experimental characterization of the single module", Conf Proc IEEE on Intelligent and Robotic Systems – IROS 2013, 3567-3581

Soft Robotics applications

Biomedical applications: endoscopy, assistance to elderly and disabled people

Realistic simulators of body parts

The initial challenge: can we build robots with soft materials?

Realistic larynx simulator

Artificial biomimetic device mimicking the principal functions of a larynx by replicating its **main structures and material properties**.

SPRING

ELASTOMERIC MATERIAL

CABLE TO ALLOW ADD/ABDUCTION

MOVEMENT

Electro- magneto- rheological fluids

Pneumatic actuation

Cable driven actuation system

In collaboration with University of Pisa, Cisanello Hospital, Prof. Ursino

Soft Robotics applications

Biomedical applications: endoscopy, assistance to elderly and disabled people

Realistic simulators of body parts

The initial challenge: can we build robots with soft materials?

Soft Robotics for marine applications

cuola Superiore

PoseiDrone

- * Marine 'soft' robot
- Can operate in contact with the sea bottom or the manufacts to explore
- * Locomotion and grasping capabilities

Fondazione Livorno, 2012 – 2015

PoseiDRONE: a Soft Robot for a novel generation of Underwater Vehicles

Fondazione Livorno, 2012 - 2015

Soft Robotics applications

Biomedical applications: endoscopy, assistance to elderly and disabled people

Realistic simulators of body parts

can we build robots with soft materials?

More to come!

The initial challenge:

Marine applications

Manufacturing, Agriculture

Soft Robotics: a growing research field at international level

Marked List

Citations in Each Year

1600

1400

1200

Back to Search

Citation Report: 1.367

You searched for: TOPIC: (soft robotics)Mor

Papers («Soft Robotics» in Topics, source: ISI)

My Tools

This report reflects citations to source items indexed within All Databases.

Published Items In Each Year

Special issue on "Soft Robotics" of Advanced Robotics 26(7), 2012

Special issue on "Soft Robotics" of Actuators

Soft Robotics: a growing research field at international level

Events

- Swiss-Japan Joint Seminar on "Soft Robotics: Morphology, materials, and functionalities", University of Tokyo, June 20-23, 2010 Special session on "Soft Robotics" at FET11 conference, Budapest, May 4-6, 2011 Workshop at the IEEE International Conference on Advanced Robotics (ICAR 2011), Workshop at the IEEE International Conference of Robotics and Automation (ICRA 2011). Organized sessions on "Smart Materials and Actuators for Soft robotics", in IEEE-RAS/EMBS International Conference on Biomedical Robotics (BioRob2012), June 24-27, 2012 4 organized session on related topics at IEEE International Conference of Robotics and Automation (ICRA 2012). Organized sessions on "Soft Robotics" in IEEE-RAS/EMBS International Conference on Biomedical Robotics (BioRob2012), June 24-27, 2012 ETH Summer School on "Soft Robotics", Zurich, Switzerland, 2012 & 2013 IEEE IROS 2013 Workshop on "Soft Technologies for Wearable Robots" IEEE ICRA 2014 Workshop on "Soft and Stiffness-Controllable Robots for Minimally **Invasive Surgery**" International Workshop on "Soft Robotics and Morphological Computation", Monte
- Verità, Switzerland, July 14-19, 2013

Soft Robotics: a growing research field at international level

IEEE.org IEE	E Xplore Digital Library	IEEE Standards IEEE S	pectrum More Sites				⊶ Sign in
 RAS TC on Soft Robotics Co-Chairs: Fumiya Iida, Cecilia Laschi, Akio Ishiguro, Robert Wood 					IEEE		
About RAS	Member Communities	Conferences & Workshops	Publications	Technical Committees	Education, Outreach & Career	Awards & Recognition	Industry & Government
Search RAS V	Vebsite	Q	Latest	News: 🔝 Follov	w: 🖪 Mi piace { 🚹 ⊻	You Tube	Join RAS

HOME > SOFT ROBOTICS

Soft Robotics

Activities

Contact

Join Us

Back to Technical Committees

Soft Robotics

Scope:

There has been an increasing interest in the use of soft and deformable structures in the robotic systems. Soft and deformable structures are crucial in the systems that deal with uncertain and dynamic task-environments, e.g. grasping and manipulation of unknown objects, locomotion in rough terrains, and physical contacts with living cells and human bodies. Moreover the investigations on soft materials are also necessary for more visionary research topics such as self-repairing, growing, and selfreplicating robots. Despite its importance and considerable demands, the field of Soft Robotics faces a number of fundamental scientific challenges: the studies of unconventional materials are

http://www.softrobotics.ethz.ch

RoboSoft

A Coordination Action for Soft Robotics

Type of funding scheme: Coordinating Action (CA) Work programme topics addressed: ICT-2013.9.1: Challenging current Thinking, FET-Open Duration: 36 months, Budget: 952 960 € from EC

RoboSoft rationale

- * A Coordination Action in Soft Robotics is extremely necessary and **timely** in the current landscape of robotics and biorobotics to endorse the rapid development of this new area at the merge of engineering and science and its community and **to exploit the challenging potentiality** of the use of soft technologies for the future generation of machines.
- * A common forum will help soft robotics researchers to **combine their efforts, to maximize the opportunities and to materialize the huge potential impact**.
- * On the other hand, leaving the soft robotics community **scattered** would waste its potential for scientific progress and technological innovation, as the achievements in this field do not find proper publication, presentation and discussion in existing scientific contexts.

* RoboSoft will create the missing framework for the soft robotics scientists, regardless of their background disciplines, and will enable the **accumulation** and sharing of crucial knowledge needed for scientific progress in this field.

Objective ICT-2013.9.1 Challenging current thinking

This objective also supports Coordination and Support Actions for creating the best conditions within which FET research can flourish and achieve the transformative impacts that it aspires to. These activities may be, for example:

- actions, including networking and dissemination activities, aiming at the emergence of new research communities or collaborations involving a broad diversity of disciplines and actors into FET research;
- actions towards the increased active involvement of high-tech research intensive SMEs in exploratory research directions relevant to future ICT markets;
- actions that stimulate excellence and future leadership of pioneering teams of young researchers along new, exploratory research directions relevant to future ICT;
- actions aiming to strengthen the international dimension of FET.

INSTITUTE

Objective ICT-2013.9.1 Challenging current thinking

Expected impact

For CSA actions:

- catalyse transformative effects on the communities and practices for high-risk and high-impact research and on the mechanisms to support the global nature of such research;
- new, engaged and risk-taking research communities prepared to develop new and non-conventional approaches for addressing future challenges in science and society.

RoboSoft community (D2.1)

Current list of community members

- Total 22: 12 EU + 10 non-EU countries
- * 2 Biological Insights
- * 5 Control Architectures and Paradigms for Soft Robot
- * 10 Smart Materials, Soft Actuators and Soft Sensors
- * 4 Stretchable Electronics and Energy Harvesting

Institutions and key persons' list

#	Institution	Key Person	Tentative Working Group	Country
1	Hebrew University of Jerusalem	Benny Hochner	Biological insights	Israel
2	Tufts University	Barry Trimmer	Biological insights	USA
3	MIT	Daniela Rus	Control Architectures and Paradigms for Soft Robots	USA
4	Heron Robots	Fabio Bonsignorio	Control Architectures and Paradigms for Soft Robots	Italy
5	IRCCyN	Frederic Boyer	Control Architectures and Paradigms for Soft Robots	France
6	UZH - AI Lab	Helmut Hauser	Control Architectures and Paradigms for Soft Robots	Switzerland
7	University of Tsukuba - Flexible robotics Lab	Hiromi Mochiyama	Control Architectures and Paradigms for Soft Robots	Japan
8	Edinburgh University	Adam A. Stokes	Smart Materials, Soft Actuators and Soft Sensors	UK
9	IIT Center for Micro-BioRobotics	Barbara Mazzolai	Smart Materials, Soft Actuators and Soft Sensors	Italy
10	Tallin University, Centre for Biorobotics	Maarja Kruusmaa	Smart Materials, Soft Actuators and Soft Sensors	Estonia
11	TU Berlin	Oliver Brock	Smart Materials, Soft Actuators and Soft Sensors	Germany
12	Cornell University	Rob Shepherd	Smart Materials, Soft Actuators and Soft Sensors	USA
13	Seul National University	KyuJin Cho	Smart Materials, Soft Actuators and Soft Sensors	South Korea
14	Soft Materials Research Laboratory, UCLA	Qibing Pei	Smart Materials, Soft Actuators and Soft Sensors	USA
15	Osaka University	Koh Hosoda	Smart Materials, Soft Actuators and Soft Sensors	Japan
16	EPFL - Laboratory of Intelligent Systems	Dario Floreano	Smart Materials, Soft Actuators and Soft Sensors	Switzerland
17	Carnegie Mellon University - The Robotics Institute	Yong-Lae Park	Smart Materials, Soft Actuators and Soft Sensors	USA
18	The Chinese University of Hong Kong	Michael Wang	Smart Materials, Soft Actuators and Soft Sensors	China
19	EPFL - Reconfigurable robotics laboratory	Jaimie Paik	Stretchable Electronics and Energy Harvesting	Switzerland
20	University of Tokyo	Takao Someya	Stretchable Electronics and Energy Harvesting	Japan
21	Fraunhofer IZM	Thomas Löher	Stretchable Electronics and Energy Harvesting	Germany
22	Vrije Universiteit Brussel	Francis Berghmans	Stretchable Electronics and Energy Harvesting	Belgium

Events: 3 Plenary Meetings

ant'Anna

THE BIOROBOTICS INSTITUTE

Working papers and book series

THE BIOROBOTICS

Events: 2 Summer Schools

Scuola Superiore ant'Anna

THE BIOROBOTICS INSTITUTE

Plan for fertilization events (D2.3)

Plan for fertilization events (2014-2015) (D2.3)

Addressed community	Event name and website	Type of event to propose (presentation, exhibition,)	
Materials, energy, actuators	EuroEAP 2014 conference	Joint event with ESNAM network	
Neuroscience	Neuroscience 2014	Symposia or Minisymposia	
Cognitive systems	Genetic and Evolutionary Computation Conference (GECCO)	Oral presentation	
Materials science	Spring Conference of the European Materials Research Society (<u>E-MRS</u>)	Oral presentation or exhibition	
Modeling	Natural Resource Modeling Conference	Oral presentation	
Marine Technology	<u>Oceans</u>	Oral presentation	
Natural, social sciences, environment	World Congress on Sustainable Technologies	Oral presentation or exhibition	

Concluding remarks

- RoboSoft is representing an important opportunity for our community to consolidate and grow
- RoboSoft is providing resources for scientific initiatives and for dissemination, to the benefit of the members of the RoboSoft community
- RoboSoft is open to new members and to new initiatives – everyone is invited to be collaborative and proactive

INSTITUTE

cuola Superiore

Enjoy the meeting and good work!

Thanks

Research Centre on Marine Robotics, Livorno

CFD Octo-Prop, Marie Curie
PoseiDRONE, Fondazione Livorno
RoboSoft CA, FET-Open
Smart-e, Marie Curie ITN

www.octopus-project.eu

Goctopus

Soft Robotics Team:

- Paolo Dario
- Matteo Cianchetti
- Davide Zambrano
- Laura Margheri
- Marcello Calisti
- Francesco Giorgio-Serchi
- Maurizio Follador
- Michele Giorelli
- Federico Renda
- Andrea Arienti
- Alessia Licofonte
- Serena Tricarico
- Mariangela Manti
- Vito Cacucciolo
- Francesco Corucci

First RoboSoft Plenary Meeting

	March 31, 2014			
Time	Session	Room		
9.00 - 9.15	Registration	Aula Magna		
9.15 – 9.45	RoboSoft welcome and introduction : <i>Cecilia Laschi</i> RoboSoft CA Coordinator (BioRobotics Institute, Scuola Superiore Sant'Anna)	Aula Magna		
9.45 – 10.30	Invited talk: <i>Paolo Dario</i> (BioRobotics Institute, Scuola Superiore Sant'Anna) "Soft robotics: new frontiers for BioRobotics and Robot Companions"	Aula Magna		
10.30 - 11.00	Teasers (I)	Aula Magna		
11.00 - 11.30	Poster Session & Coffee Break	Aula Magna Storica		
11.30 – 12.15	Invited talk: <i>Rolf Pfeifer</i> (AI Lab, University of Zurich) "Soft robotics - the next generation of intelligent machines"	Aula Magna		
12.15-13.00	Assignment of Working Groups	Aula Magna		