Sheila Russo, Paolo Dario, Arianna Menciassi
The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
The Surgical Robotics and Allied Technologies Group

“Flexible Robotic Approaches to Enhancing Laser Surgery and Microsurgery”

RoboSoft plenary meeting - Pisa, April 1, 2014
Surgical scenario

Transurethral laser ablation of the prostate for the treatment of benign prostatic hyperplasia (BPH)

ISSUES:

- Limited dexterity and tactile feedback at the tip
- Not homogeneous ablation: carbonization and craters formation
- Decrease of accuracy, lengthening of operative and recovery time and increase of patient’s pain
ASTRO: Actuated and Sensorised Tool for laserR assisted surgery of the prOstate

Design of ASTRO:

- Flexible multilumen catheter in polyamide (PA12): optical isolation, mechanical continuum for strain transmission
- Integration of sensors for contact detection (FBG) between laser and prostatic tissue: miniature size, no cabling, biocompatibility, electromagnetic interference immunity
- Redundant sensors for temperature compensation
- Integration of cables for actuation
ASTRO: Actuated and Sensorised Tool for laserR assisted surgery of the prOstate

- New assistive technologies and **flexible robotic tools** to provide safety, efficiency, and improved quality to laser assisted surgical procedures.

- Design and evaluation of a **novel, miniaturized, flexible robotic endoscopic system**, based on a **steerable catheter**, for laser assisted transurethral surgery of BPH.

- The central idea is to augment the **surgeon's dexterity, manipulation skills** and efficiency through advanced **surgeon-robot interfaces**, **sensors** and **actuators**.

- Preliminary study demonstrated the ability of the system to sense contact forces between the laser fiber and the target tissue of up to **1 mN** and to steer the laser tip inside the prostatic urethra of about **± 10°**.